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The cross section is given in the impulse approximation for inelastic e-He3 and e-ffl scattering assuming an 
ejected proton is counted in coincidence with the scattered electron. The process e-j-He3 —> d+p-\-ef is con­
sidered in detail. This cross section is evaluated for the Gaussian, Irving, and Irving-Gunn three-body wave 
functions, the deuteron being described by a Hulthen wave function. The best agreement with the pre­
liminary experimental results is obtained using the Irving-Gunn wave function. 

I. INTRODUCTION 

THE structure of the three-nucleon systems He3 

and H3 has been the subject of much recent experi­
mental and theoretical investigation. Elastic scattering 
of high-energy electrons from these nuclei has been used 
to measure the charge and magnetic moment form 
factors of both He3 and H3.1'2 Theoretical analysis of 
these form factors has given new insight regarding the 
wave function for the three-nucleon system.3-5 In ad­
dition to elastic electron scattering, recent experiments 
on the photodisintegration of He3 also give information 
on the structure of the three-nucleon system.6 The pur­
pose of the present paper is to show how the coincidence 
cross section for inelastic scattering of high-energy 
electrons from He3 and H3 may be used as a further 
sensitive test of the three-nucleon wave function.7 

The three processes we wish to consider are 

e+tte*-^d+p+e', (la) 

e+He3 -> (n+p)j^o+p+ef, (lb) 

e+W -> (n+nh-o+p+J. (lc) 

The inelastically scattered electron and the ejected 
proton are to be measured in coincidence. We treat this 
process in the impulse approximation, keeping only 
those terms corresponding to the electron interacting 
with the ejected proton. The electron-proton interaction 
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is treated in Born approximation using the effective 
Hamiltonian given by McVoy and Van Hove.8 Inter­
actions of the ejected proton with the final two-nucleon 
system are neglected, so that the relative motion of the 
proton and two-nucleon system is described by a plane 
wave. 

In choosing an initial nuclear wave function we make 
use of a classification of the possible T=%, J= J+states 
of the three-nucleon system, given by Derrick and Blatt.9 

There are three possible 25i/2 states, one of which is 
symmetric in the interchange of the space coordinates 
of any pair of nucleons (this is the dominant state which 
we denote by S), one of which is space-antisymmetric, 
and one of which has mixed symmetry (denoted by £')• 
In addition, there are three 2Pi /2 states, one 4Pi /2 state, 
and three 4Z>i/2 states. In Sees. II-IV of this paper, we 
shall be concerned with the contributions of the domi­
nant S state. It is believed that the antisymmetric S 
state and the four P states are not present in the ground-
state wave functions to any appreciable extent.10 The 
effect of small admixtures of the S', P, and D states 
which are thought to be present will be discussed in 
Sec. V. 

II. ANALYSIS 

In this section we derive a formula for the cross sec­
tion for inelastic electron scattering from He3 and H3 

with the detection in coincidence of an ejected proton. 
For definiteness we consider the process e+He3 —> 
d+p+e' shown in Fig. 1. Since we treat this process in 
Born approximation, the incident and final electrons 
are described by plane-wave Dirac spinors. We use the 
impulse approximation, keeping only the terms corre­
sponding to the electron interacting with the ejected 
proton. The effective Hamiltonian for the interaction 
between the electron and proton, to order q2/M2, can 

8 K. W. McVoy and L. Van Hove, Phys. Rev. 125, 1934 (1962). 
9 G. Derrick and J. M. Blatt, Nucl. Phys. 8, 310 (1958). See 

also R. G. Sachs, Nuclear Theory (Addison Wesley Publishing 
Company, Inc., Reading, Massachusetts, 1953), p. 180. 

10 J. M. Blatt, G. H. Derrick, and J. N. Lyness, Phys. Rev. 
Letters 8, 323 (1962). 
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FIG. 1. Inelastic elec­
tron scattering. 

He* 

be written in the form8 

Aire2 3 

H'= (uf\ E i [ l + r 3 ( i ) ] | Flp(q
2)e~^ 

FiAq2), 

vr(qxa)e~iQ'xj 

2M 

rFlp(q
2) + KpF2p(q

2) 

+ 

2M 

lFlp{?)+2KpF2v{q2)y-iq'xj \\ui). (2) 
8M2 

The notation used is as follows: ki and kf are the initial 
and final electron four momenta; q2=(ki—k/)2 is the 
four-momentum transfer to the proton; Fip and Fip 

are the Dirac and Pauli form factors of the proton; a 
is the Dirac matrix which operates on the free-electron 
spinors Ui and %; p and OP are the momentum and spin 
operators for the proton, KP is the anomalous moment 
of the proton in nuclear magnetons, and M is the nucleon 
mass. We use units in which h = c:=l and the metric 
a-b—aobo— a*b. 

It is convenient to write the matrix element for the 
reaction in the form 

911= - {^e2/q2)l(us | m)Q- (uf | a | u%)• J ] , (3) 

where 

>=[> iP-
8M2 

-(F1P+2KPF2P) 

X<*, |E i P + T s O W * ! * . - ) , (4a) 
j ' - i 

ip, 
8 f ^ i , 

+C(^ ip+* i^« i . ) /2J f ><q,x'(wy x q) I-A.) (4b) 

with ^» and ^/ the initial and final nuclear wave 
functions. 

After squaring the matrix element and summing over 
electron spins we obtain 

(47re2)2 

| E |9TC|2= {4E<Ef\Q\*-2E&*ki>3 
electron q^ 

spins 

-2£<ek /-J*--2E<e*k / .J-2E /gk i .J* 

+2k r Jk r J*+2kr J*k / - J+^ 2 | e | 2 - ^ J - J : 5 c } . (5) 

The evaluation of the coincidence cross section is then 
reduced to the evaluation of the nuclear matrix elements 
Q and J, which depend on the choice of initial and final 
nuclear wave functions. In choosing these wave functions 
we will be guided to some extent by the previous results 
on elastic electron scattering and photodisintegration 
of He3. 

For the initial three-body wave function ^ we closely 
follow the notation of Schiff5 and write the dominant 
Estate wave function as 

^*(ri,r2,r8) = «(ri2,ri8,r28)0o, (6) 

where the spatial wave function u is completely sym­
metric under the interchange of any pair of nucleons. 
The spin-isospin function <£0 is defined to be 

^0=[X2(l,2,3)i?i(l,2,3)-X1(l,2,3)i72(l,2,3)]/v5, (7) 

where the doublet spin functions are given by 

Xi(l,2,3) = i : (J lwiW-w 1 | J l Jw)X 1«i(2,3)X 1 / 2 - i ( l ) , 

(8a) 

X2(l)2,3)-X0°(2)3)X1/2-(l). (8b) 

The doublet isospin functions rj are defined similarly. 
In the final three-body wave function we describe the 

ejected proton by a plane wave. That is, we neglect the 
final-state interactions between this proton and the 
other nucleons. The residual two-nucleon system we 
assume to be left in either the *Si or Ŝo state. The final 
wave function is then 

^/(ri,r2,r3) = V5^(f28) exp[—zpr (r2+r3)/2-Hp/-ri] 
XX/(2,3)X1/2(1)^(2,3)^1/2(1), (9) 

where p/ is the momentum of the ejected proton and 
q=k4—k/. The momentum of the proton in the initial 
state, which is the negative of the total momentum of 
the recoiling two-nucleon system, is denoted by p*. It is 
not necessary to explicitly antisymmetrize the final wave 
function, since the interaction and the initial state have 
the correct symmetry. The effect of antisymmetrizing 
the final state is to introduce the factor v5 in Eq. (9). 
The generalized Pauli principle requires that J-\-T= 1. 

Using these wave functions to evaluate the nuclear 
matrix elements Q and J, the coincidence cross section 
for the three processes may be written, after some alge-
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braic manipulation, in the form: 

L e+B.&->d+p+ef 

d"cr/dEfdQf(mp^=^o\Ii\2; (10a) 

I I . e+H&->{n+p)j^+p+ef 

d3a/dEfdQfdttp=±<r0\Io\2; (10b) 

I I I . e + H 3 - » (n+n)M+p+ef 
d*<j/dEfdQfdttp= a0\I0\

2; (10c) 
where 

I P / l f r A W " [ „ 2 52
 2 p 2 

O"0— C M o t t i - ^ l p K-pFlp 
( 2 x ) 3 | k < / £ - P < / i W | I 4M2 

q2 6 Fl3? 6 
H ta.tf-(Flp+KpF2p¥+ t a n 2 - ( 2 P / - q ) 2 

2AP 2 AM2 2 

' i p 
• sec2-[>r (2p/-q)fe/- ( 2p / -q ) 

4Af2 2 

- 2 M ( ^ + l , ) - ( 2 p / - q ) ] , (11) 

and 

7 /̂ dh<pj(g) e x p [ i ( q - p / ) - r > ( p , r ) . (12) 

The vectors 9 and r are related to r^ r13, and r^z through 
the equations r23=9, ri2=r— g/2, rn=r+g/2, while 

crMott= e4 cos2(0/2)/4£* sin4(0/2). (13) 

The kinetmatical relations among the parameters ap­
pearing in Eqs. (9) to (13) are given in Appendix A. 

Note that since q—p/=p* is the initial momentum 
of the ejected proton, the cross-section factors into the 
cross section for scattering from a proton of momentum 
pi, times the probability of finding a proton with mo­
mentum pi in the initial nucleus. The angular distribu­
tion of the coincidence proton clearly provides a sensi­
tive test of the initial three-body wave function. 

III. ANALYTICAL RESULTS 

In this section we give analytical results for the pro­
cess e+He 3 —> d+p+e' for some specific wave functions. 
We choose to discuss this process in detail since the deu-
teron wave function is relatively well known, allowing 
the three-body system to be investigated without the 
additional complications arising from uncertainties in 
one's understanding of the two-body system. We de­
scribe the deuteron by the Hulthen wave function11 

<PI(Q) = ZN/(bryi*l(<r*>-e-*')/p, (14) 

where a =45.8 MeV, 5=285 MeV, and the normaliza­
tion constant is 

N=Z2ab(a+b)2ll2/(b-a), (15) 

11L. Hulthen and M. Sugawara, in Handbuch der Physik, 
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 39. 

The three-body wave functions we shall consider are 
the Gaussian and Irving12 wave functions, which were 
used by SchifF in his analysis of elastic e—He3 and e—W 
scattering, and the Irving-Gunn wave function,13 

which Berman, Koester, and Smith6 used in their analy­
sis of the photodisintegration of He3. The techniques 
used to perform the required integrations analytically 
are given in Appendix B. 

A. Gaussian Wave Function 

The spatially symmetric Gaussian wave function is 

u (fi2,f28,ris) = A exp[— | a 2 (r 12
2+r23

2+ fis2)] 

= A e x p [ - a V + 3 p 2 / 4 ) ] , (16) 

where the normalization constant A is given by 

^ = 33'4a3/7r3/2. (17) 

The required integral i"i(p») is straightforward and turns 
out to be 

/ i ( P ; ) -
4irB'24Arf a 

3a" [y/St 

b 

-ea2i*a{l~$(—X] 
a L VvWJ 

ebVZa2\ \ J )lL-P<8/4«*. (18) 

In Eq. (18), $(x) is the error function denned by 

2 
$(x) 

2 fx 

= / e~y2dy. (19) 

B . Irving Wave Function 

The spatially symmetric Irving wave function is 
denned to be 

^(^12/23/13) = ^ e x p [ - i a ( f 1 2
2 + f 2 3

2 + f i 3 2 ) 1 / 2 ] 

= A exp [ - | a (2 r 2 +3p 2 / 2 ) 1 / 2 ] , (20) 

where the normalization constant A is given by 

^ = 33/4Q !3/(120)l/27 r3/2, (21) 

In this case, using the techniques given in Appendix B, 
one finds the integral 7i(p») to be 

/i(p<) = 
2560x3/2(62-a2)^7Vr 

via 6 

xf-
Jo (a? 

k2dk 

(a2+k2) (62+&2)[ l+ (8&2/3<*2) + (2p*/c?)Ji* 

(22) 

While the integral in Eq. (22) can be evaluated analytic­
ally, it was found to be more convenient to compute it 

12 J. Irving, Phil. Mag. 42, 338 (1951). 
13 J. C. Gunn and J. Irving, Phil. Mag. 42, 1353 (1951). 
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numerically, owing to the complexity of the analytical 
result. 

C. Irving-Gunn Wave Function 

The spatially symmetric Irving-Gunn wave function 
is 

u(ri2,riz,r2z) 

= ^exp[-|a(f122+f232+ri32)1 / 2]/[ri22+/'i82+^2]1 / 2 

= A exp[~|a(2f 2+3p 2 /2) 1 / 2] / [2f 2+3p 2 /2] 1 / 2 , (23) 

with 

A = 31W/y/2v*l*. (24) 

The required integral in this case is evaluated as dis­
cussed in Appendix B. The result is 

/ i ( p < ) = -
256T3i2(b2-a2)AN 

X / 
Jo 

kHk 

o (a?+k2) ( 6 * + # ) [ l + ( 8 ^ / 3 a 2 ) + (2^ i
2 /a2)]6 /2 

(25) 

Again the remaining integration can be performed ana­
lytically, but we leave it in this form for computational 
convenience. 

IV. NUMERICAL RESULTS 

We have evaluated the coincidence cross section 
numerically for the three-body wave functions described 
above. The experimental conditions chosen for the calcu­
lation were those at which recent data have been ob­
tained,14 namely E , -549 .1 MeV, £ /=443.4 MeV, and 
0= 51.68 deg. The corresponding four-momentum trans­
fer is q2= — 4.75 F - 2 . Kinematic relations useful in 
performing the computations are given in Appendix A. 
The results are shown in Fig. 2, where the coincidence 
cross section is given :as a function of 6P, the angle be­
tween the ejected proton momentum and the incident 
electron beam. The values of the parameter a for the 
three cases were the following: For the Gaussian 
o:=75.9 MeV, for the Irving «=250 MeV, and for the 
Irving-Gunn a = 152 MeV. For the Gaussian and the 
Irving wave function these values are those found by 
Schiff in his analysis of the elastic e— He3 and e—W 
experiments.5 In the case of the Irving-Gunn, we use the 
value of a, found in the analysis of the photodisintegra-
tion of He3, which was also found to fit the charge form 
factor and the Coulomb energy of He3.6 

Recent measurements of the e—He3 coincidence cross 
section14 are indicated in Fig. 2 for comparison with the 
cross sections calculated for the completely symmetric 
Gaussian, Irving, and Irving-Gunn wave functions. 
Comparing the calculations with the experimental 
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FIG. 2. The cross section d3a/dEfdttfd£lp for the process e+He3 —» 
d-\-p-\--e' as a function of the proton scattering angle Bv for the 
conditions £* = 549.1 MeV, £ / = 443.4 MeV, and (9 = 51.68 deg. 
The curves shown are the results obtained using Gaussian, Irving, 
and Irving-Gunn three-body wave functions having parameters a 
of 75.9, 250, and 152 MeV, respectively. The normalization is 
absolute. 

results, one sees that the Irving-Gunn wave function 
gives an adequate fit to the data. The Irving and Gaus­
sian wave functions give rather poor fits, the Gaussian 
being considerably worse than the Irving. 

V. ADMIXTURES IN THE THREE-BODY 
WAVE FUNCTION 

The calculations shown in Fig. 2 include only the 
contribution of the dominant 5 state of the He3 wave 
function, the contribution of the other nine possible 
states being neglected. Before any definite conclusions 
may be reached regarding the coordinate dependence 
of the wave function, it is important to know the con­
tribution of these other states. 

Of the ten possible states which can be present, vari­
ational calculations of the binding energy of the triton 
indicate that the fully antisymmetric S state and the 
four P states are not present in the wave function to 
any appreciable extent.10 These same calculations sug­
gest that the total Z>-state probability may be of the 
order of a few percent, while the probability of the Sf 

state was found to be of the order of or less than 1%. 
In the analysis of the elastic electron scattering on 

He3 and H3, Schifl found that the difference in the charge 
form factors of He3 and H3 could be explained by an 
admixture of the S' state of the order of 4%.5 

Although these additional states are present with, at 
most, a few percent probability, the square of the matrix 
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element can contain an interference with the S state 
proportional to the amplitude, which can be important. 
For reasons given below only the S' state contributes 
an important interference term of this type. 

The S state and that P state which have coordinate 
wave functions which are completely antisymmetric 
clearly cannot contribute to the matrix element since 
the final-state deuteron coordinate function is sym­
metric. Moreover, the remaining three P states cannot 
contribute to the matrix element. Their wave functions 
are proportional to r x 9, which leads to a vanishing 
matrix element when integrated over the azimuthal 
angle of either r or 9. 

Although the contribution to the matrix element from 
the three D states does not vanish, its interference with 
the S-state matrix element vanishes when averaged over 
spins, assuming the target is unpolarized and neglecting 
the magnetic part of the interaction. Consequently, to 
order q2/M2 times the D-state amplitude, there is no 
contribution to the interference allowing the D state to 
be neglected also. 

The remaining state, called S', does indeed contribute 
an interference term with the S state and cannot be 
ignored is present with a probability of a few percent. 
Following the notation of Schiff,5 the three-body wave 
function including the S' state is 

^(ri ,r2 ,r3) = cos5 «(fi2,f 18,̂ 23)00 

+sin5[w2(ri ,r2 ,r8)0i- fli(ri,r2,r8)02], (26) 

where 
01==(X2)72-X1r?1)/v2, (27a) 

02=(Xit72+X2r?1)/v2, (27b) 

0o, Xi,2, and 971,2 being defined by Eqs. (7) and (8). 
The coordinate functions vi and v2 can be written in 
terms of a single function g (ri,r2; r3) which is symmetric 
in its first two arguments. 

»i(ri,r2,r3) = [g(ri,r2; r3)+g(ri ,r3 ; r2) 

-2g(r 2 , r 3 ; r i ) W 6 , (28a) 

fl2(ri,r2,r3) = [g(ri,r2; r 3 ) -g( r i , r 3 ; r 2 ) ] / \ 5 . (28b) 

We have separately normalized the S and Sf parts of 
ypi so that sin25 is the S'-state probability. Using Eq. (26) 
for the initial wave function modifies the cross sections 
given in Eqs. (9) to read 

I. e+H.ez-*d+p+e' 
d3a/dEfdQfdttp= %a0 \ cos&Ti+sinSiV | 2 ; (29a) 

II . H -He 3 -> (n+p)j^+p+ef 

dz<r/dEfdttfdttp=i(jo | c o s 5 / 0 - sin$/0 ' 12; (29b) 

III. e+H.z->(n+n)j^+p+e' 

d*a/dEfd2fdttp==(To\cos5Io-sm5Io'\2. (29c) 

In similar manner to Eq. (11) we define the S' integrals 

to be 

/ / (P<) = •hf dsr<pj(9) e x p [ i ( q - p / ) . r > i ( p , r ) . (30) 

Numerical calculations for the process e+He3—> 
d+p+e? considered above have been carried out in­
cluding the S' contribution in the case of the Irving and 
Irving-Gunn wave function. As can be seen from Fig. 2 
there is little point in considering the Gaussian wave 
function further. For the Irving and Irving-Gunn wave 
functions the function g is given by 

g(n,r2; n) = B e x p C - K ^ ^ + a ^ ^ + z S V ! , 2 ) 1 / 2 ] , (31a) 

and 

g(ri,r2;r8) = , (31b) 
{ni+rn'+r^yi2 

respectively. We assume p is not too different from a 
so that only lowest order terms in 0—a need be retained. 
In this approximation the normalization constants B 
are 

B= (S3/35>irzy'2ta4/(a~t3)l, (32a) 

for the Irving wave function, and 

B= (6v5/57r3)1 /2[a3 /(a-^)], (32b) 

for the Irving-Gunn wave function. 
Using techniques similar to those given in Appendix B, 

one finds the integrals / / to be 

/ i ' ( p i ) = 
71680rW5(a-/3)(&2-a2) 

Jo (a2 

9V2a9 

(3pi2+4:k2)k2dk 

10 (a2+k2)(b2+k2)tl+(Sk2/3a2)+(2p?/a2)JI2 

(33a) 

for the Irving wave function and 

512TT2NB(a-~l3)(b2-a2) r k2 

/ i ' (Pi) = -

{; 
3Vla« Jo O 2+£ 2)0 2+& 2) 

16 5 

e4D+o2+d+e2) i /2] (i+c2)7/2 

• p , (33b) 
<22(i+<22)6/2 <24(i+()2)3/2 

for the Irving-Gunn wave function where 

Q»=(8*»+6^) / (3a») . (34) 

The effect on the coincidence cross section of a 4 % 
(sin5=0.2) S' state as indicated by the analysis of the 
elastic-scattering data5 is shown in Figs. 3 and 4. The 
experimental conditions are the same as above, i.e., 
Ei=549.1 M e V , ' E / = 443.4 MeV, and 0=51.68 deg. 
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The experimental data indicated in the figures are those 
of Johansson.14 From Figs. 3 and 4 it is evident that 
such a large admixture of S' state does not improve the 
agreement in the case of the Irving wave function and 
clearly destroys the agreement in the case of the 
Irving-Gunn wave function. 

VI. SUMMARY 

In conclusion we wish to emphasize that the coinci­
dence cross section provides a sensitive means for in­
vestigating the three-body wave function. The present 
calculations when compared with the experimental data 
indicate that the Irving-Gunn wave function is some­
what better than the Irving wave function and that the 
Gaussian wave function is a rather poor approximation. 
It is consistent with this approximate calculation to 
neglect the effects of admixtures of states other than the 
dominant S state amounting to a few percent, with the 
exception of the S' state. The results of including the S' 
state indicate that an admixture as large as 4% is 
inconsistent with the present data. This conclusion is 
corroborated by recent calculations of the slow neutron 
capture rate on deuterium.15 
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45 5 0 55 
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FIG. 3. The cross section d3<r/dEfd£lfd£lp for the process e+He3 —> 
d-\-p-\-e' as a function of the proton scattering angle Bp for the 
conditions £* = 549.1 MeV, JE/=443.4 MeV, and 0=51.68 deg. 
The curves are the results obtained using the Irving wave function 
(a = 250 MeV) with no S' state and with a 4% admixture. 

15 N. T. Meister, T. K. Radha, and L. I. Schiff, Phys. Rev. 
Letters 12, 509 (1964). 
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FIG. 4. The cross section d3<r/dEfd£lfd&p for the process e+He3 —> 
d-\-p+ef as a function of the proton scattering angle $p for the 
conditions ^ = 549.1 MeV, £/=443.4 MeV, and 0=51.68 deg. 
The curves are the results obtained using the Irving-Gunn wave 
function (a= 152 MeV) with no 6" state and with a 4% admixture. 
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APPENDIX A: KINEMATICS 

We denote the initial and final electron (proton) 
momenta in the laboratory by k* and k/ (p< and p/), 
respectively, so that momentum conservation requires 

pd-k;=P/+k/. (Al) 

Notice that —pi is also the total momentum of the re­
coiling two-nucleon system. Denoting the initial and 
final electron energies by Ei and Ef) respectively, we 
have 

£ < - & = £ / + (p//2M)+ (pt/2Md), (A2) 

where the binding energy EB=M+Md—Mue\ We 
define the angles 6, 6P, and^0 such that cos$=krkf, 
cosdp=ki-pf, and cos@==^/-l/. The kinematic relations 
useful in evaluating the cross section are the following: 

g2= (ki~kfy= ~4Et-E/ sin2(0/2), (A3) 
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M > + (Md/M)']+2pf(kf cos@-^ cos0p) 

+c?+2Md(EB-Ei+Ef) = 0, (A4) 

ki • (2p/—q) = 2^/ cos^+ &/ cosd—ki, (A5) 

&/' (2p/—q) = 2/>/ cos©—ki cos0+ ft/, (A6) 

(2p/-q)2=4^/+q2-4^ /(ft,- cos0p-ft/ cos©). (A7) 

Throughout we neglect the rest mass of the electron. In 
the case when the incident electron, scattered electron, 
and ejected proton are coplanar, which corresponds to 
the experimental conditions considered in the text, we 
have simply ©=0+0p . 

APPENDIX B: EVALUATION OF INTEGRALS 

The integral required in the calculation of Ii(p) 
for the Gaussian wave function is 

lib) = AN 
/ " / • 

dzr exppp«r—aV2—fa2p2] 

X [ ( r ^ - ^ ) / p ] , (Bl) 

where the normalization factors A and N are given in 
the text. This factors into the product of tabulated in­
tegrals giving as a result Eq. (18) of the text. 

In the case of Irving and Irving-Gunn wave functions, 
the required integral is 

h(v) = AN d*p dV 
e x p p p . r - i a ^ + f p 2 ) 1 ' 2 ] 

(2r2+fp2)^2 

( g—ap—g~bp\ 

X 
/e~ap—e~bp\ 

(B2) 

where n has the values 0 and 1 for the Irving and 
Irving-Gunn, respectively. The normalization constant 
A is given by either Eq. (21) or Eq. (24), whichever is 
appropriate. To evaluate this integral we follow the 
method of Schiff5 and introduce the Fourier transform 
of the deuteron wave function. 

I cPxeikmx<p 
(2TT)3 J 

(x) = 
N(b2~a2) 

4w^2(a2+k2)(b2+k2) 
(B3) 

The integral then becomes 

ANQP-a2) r d% 
h(p) = 

/ 
dzp I dh 

47r6'2 J (a?+k2)(b2+&) 

expp(p-r+k-e)-ia(2f2+fp2)1/2] 

(2f2+fp2)»/2 
(B4) 

Next, one transforms the two three-dimensional inte­
grals over 9 and r into one six-dimensional integral 
with the substitutions 

and 
JSi,M= ( t ) 1 7 2 ^ ; ^4,5,6= ( i)1 / 2ar (BSa) 

Qi,2,3=(8/3)1/2(l/a)p; & , M = W/a)k. (BSb) 

The six-dimensional integral can then be written as 

AN(b2-a2) C d*k 
/ i ( p ) = -

4^5/2 J (a? (a2+k2)(b2fk2) 

64aw f exp[*Q-R-iT] 

33/2o;62 - . / : Rn 
d*R. (B6) 

The angular part of the six-dimensional integral may be 
performed by expanding the plane wave in Gegenbauer 
polynomials and using their integral properties.16 The 
result is 

/ 

exppQ.R-iT] 8TT3 

Rn 
-d«R=— / 

Q2Jo 
e-RJ2(QR)R*-ndR. (B7) 

For n, either 0 or 1, the radial integral may be written 
in terms of elementary functions, while more generally 
the result may be expressed in terms of hypergeometric 
functions.17 We give the result only for n equal to 0 
or 1 since these are the cases of interest here. 

Jo 
e-RJ2(QR)R3-ndR--

2*-nQ2T(i-n) 

7rl/2(;[_|_(22)(7~2n)/2 
(B8) 

Combining the results given in Eqs. (B6)-(B8) we 
arrive at the results given in the text for the Irving 
(n=0) and Irving-Gunn (n—1) wave functions. 

16 A. Sommerfeld, Partial Differential Equations in Physics 
(Academic Press Inc., New York, 1949), pp. 227-235. 

17 W. Magnus and F. Oberhettinger, Formulas and Theorems 
for the Functions of Mathematical Physics (Chelsea Publishing 
Company, New York, 1954), p. 131. 


